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Abstract
It has been persuasively argued that the number of effective degrees of freedom
of a macroscopic system is proportional to its area rather than to its volume. This
entails interesting consequences for cosmology. Here we present a model based
on this ‘holographic principle’ that accounts for the present stage of accelerated
expansion of the Universe and significantly alleviates the coincidence problem
also for non-spatially flat cosmologies. Likewise, we comment on a recently
proposed late transition to a fresh decelerated phase.

PACS numbers: 95.36.+x, 98.80.−k, 98.80.Bp

1. Introduction

Nowadays there is an ample consensus, deeply rooted in observational grounds, that the
Universe is currently undergoing a phase of accelerated expansion likely driven for some field
(dubbed ‘dark energy field’) that clusters, if any, only at the largest scales, able to generate a
negative pressure large enough to violate the strong energy condition—see [1, 2] and references
therein. By far, the conceptually simplest dark energy candidate is the cosmological constant,
�. Albeit thus far it fits reasonably well all the cosmological data it confronts two serious
drawbacks on the theoretical side. On the one hand, its quantum field value results about 123
orders of magnitude larger than observed. On the other hand, it gives rise to the coincidence
problem, namely: ‘why are the vacuum and dust energy densities of precisely the same order
today?’ (Bear in mind that the energy density of dust red-shifts with expansion as a−3, where a
denotes the scale factor of the Robertson–Walker metric.) This is why a number of candidates
of varying degree of plausibility have been proposed over the last years with no clear winner
in sight—see [3] for a recent review. Here we focus on a dark energy candidate grounded
on sound thermodynamic considerations that is receiving growing attention in the literature,
namely, the ‘holographic dark energy’.
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2. Holographic dark energy

We begin by briefly introducing the holography concept after ’t Hooft [4] and Susskind [5].
Consider the world as three-dimensional lattice of spin-like degrees of freedom and assume
that the distance between every two neighbouring sites is some small length �. Each spin
can be in one of two sates. In a region of volume L3 the number of quantum states will be
N(L3) = 2n, with n = (L/�)3 the number of sites in the volume, whence the entropy will be
S ∝ (L/�)3 ln 2. One would expect that if the energy density does not diverge, the maximum
entropy varies as L3, i.e., S ∼ L3�3, where � ≡ �−1 is to be identified with the ultraviolet
cutoff. However, the energy of most states so described would be so big that they will collapse
to a black hole larger than L3. It seems therefore reasonable that in the quantum theory of
gravity the maximum entropy should be proportional to the area, not the volume, of the system
under consideration. (Recall that the Bekenstein–Hawking entropy is SBH = A

/(
4�2

P l

)
, where

A is the area of the black hole horizon.)
Consider now a system of volume L3 of energy slightly below that of a black hole of the

same size but with entropy larger than that of the black hole. By hurling in a tiny amount
of energy a black hole would result but with smaller entropy than the original system thus
violating the second law of thermodynamics. As a consequence, Bekenstein suggested that
the maximum entropy of the system should be proportional to its area rather than to its volume
[6]. In the same vein ’t Hooft conjectured that it should be possible to describe all phenomena
within a volume by the set of degrees of freedom residing on its boundary. The number of
degrees of freedom should not exceed that of a two-dimensional lattice with about one binary
degree of freedom per Planck area.

Inspired by these ideas, Cohen et al [7] argued that an effective field theory that saturates
the inequality L3�3 � SBH necessarily includes many states with Rs > L, where Rs is the
Schwarzschild radius of the system under consideration. It seems therefore reasonable to
propose a stronger constraint on the infrared cutoff L that excludes all states lying within
Rs , namely, L3�4 � m2

P lL (clearly, �4 is the zero-point energy density associated with the
short-distance cutoff). So, we may conclude that L ∼ �−2 and Smax � S

3/4
BH . By saturating

the inequality—which is not compelling at all—and identifying �4 with the holographic dark
energy density one has [8]

ρx = 3c2M2
p

/
L2

(
M2

p ≡ (8πG)−1
)
, (1)

where c2 is a dimensionless constant.
Suggestive as they are, the above ideas provide no clue about how to choose the infrared

cutoff in a cosmological context. Different possibilities have been tried with varying degrees
of success, namely, the particle horizon [9], the future event horizon [8, 10] and the Hubble
horizon [11, 12]. Here we shall adhere to the latter for it looks the most natural one.

3. Interacting dark energy

Our model rests on three main assumptions: (i) the dark energy density is given by
equation (1), (ii) L = H−1, where H ≡ ȧ/a is the Hubble function, and (iii) matter and
holographic dark energy do not conserve separately but the latter decays into the former with
rate � > 0, i.e.,

ρ̇m + 3Hρm = �ρx, (2)

ρ̇x + 3H(1 + w)ρx = −�ρx. (3)
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Interacting dark energy was first introduced by Wetterich [13], and in a holographic setting
by Horvat [14]. In spatially flat universes there is a relation connecting the equation of state
parameter of the dark energy to the ratio between the energy densities, r ≡ ρm/ρx , and �,
namely, w = −(1 + r)�/(3rH), such that any decay of the dark energy into pressureless
matter implies a negative w. It also follows that the ratio of the energy densities is a constant,
r0 = (1 − c2)/c2, whatever �—see [11] for details.

In the particular case that � ∝ H one has ρm, ρx ∝ a−3m and a ∝ tn with m =
(1 + r0 + w)/(1 + r0) and n = 2/(3m). Hence, there will be acceleration for w < −(1 + r0)/3.
In consequence, the interaction is key to simultaneously solve the coincidence problem and
have late acceleration. For � = 0 the choice L = H−1 does not lead to acceleration. We
wish to emphasize that models in which matter and dark energy interact with each other
considerably alleviate the coincidence problem [15] and fare remarkably well when measured
against observational data [16].

Obviously, prior to the current epoch of accelerated expansion a matter dominated period
is required for the standard picture of cosmic structure formation to hold. The usual way to
incorporate this is to assume that the ratio r has not been constant but was (and possibly still
is) decreasing towards a final value r0. In the present context, a time dependence of r can only
be achieved by allowing the parameter c2 to vary slowly with time. By ‘slowly’ we mean that
0 < (c2)·/c2 � H . This is not only permissible but reasonable since it is natural to expect that
the holographic bounds get fully saturated only in the very long run or even asymptotically.
Our approach, however, offers a different way to recover an early matter dominated epoch.
Namely, for �/H � 1, the dark energy itself behaves as pressureless matter since one has
|w| � 1, even for a constant r. It is straightforward to check that the evolution of the latter is
governed by

ṙ = 3Hr

[
w +

1 + r

r

�

3H

]
. (4)

Likewise, combining Friedmann’s equation, 3M2
pH 2 = ρm + ρx , with ρx = 3M2

pc2(t)H 2

we obtain c2(t) = 1
1+r(t)

. At late times, r → r0 whence c2 → c2
0. In this scenario w depends

also on the fractional change of c2 according to

w = −
(

1 +
1

r

) [
�

3H
+

(c2)·

3Hc2

]
. (5)

Since the holographic dark energy must satisfy the dominant energy condition (and therefore
it is not compatible with ‘phantom energy’ [17]), the restriction w � −1 sets constraints on �

and c2.
For future convenience we write the deceleration parameter

q = 1
2�m + 1

2 (1 + 3w)�x, (6)

where �m and �x stand for the dimensionless density parameters of matter and dark energy,
respectively. Up to now we have restricted our attention to spatially flat Friedmann–Lemaitre–
Robertson–Walker (FLRW) universes. It proves illustrating to extend the study to FLRW
models with curved spatial sections.

3.1. FLRW universes with k �= 0

Aside from the sake of generality other motivations for allowing models with non-flat spatial
sections are as follows: (i) inflation drives the k/a2 ratio close to zero but it cannot set it to
zero if k �= 0 initially. (ii) The closeness to perfect flatness depends on the number of e-folds
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and we can only speculate about the latter. (iii) After inflation the absolute value of the k/a2

term in Friedmann’s equation is bound to steadily increase with respect to the matter density
term, thereby the former should not be ignored when studying the late Universe. (iv) Recent
observations allow a tiny but not vanishing spatial curvature [2, 18].

For curved spatial sections, equations (4) and (5) generalize to

ṙ = −3Hr
1

1 − �x

{
k

a2H 2

[
1

r

�

3H
− 1

3

]
+

1

3H

(c2)·

c2

}
, (7)

and

w = − 1

1 − �x

[
�

3H
− 1

3

k

a2H 2
+

1

3H

(c2)·

c2

]
, (8)

respectively—see [12] for details. We see that, aside from the evolution of c2, the evolution
of the matter–dark energy ratio r is immediately connected to a non-vanishing spatial
curvature which may help to speed the decrease of the former. On the other hand, because
0 < (c2)·/c2 � H by assumption and |k/(aH)2|0 � 1 by observation it follows that
|ṙ/r|0 � H0, i.e., the coincidence problem gets greatly alleviated (bear in mind that in the
conventional �CDM scenario |ṙ/r|0 = 3H0).

Likewise, the curvature term modifies the equation of state parameter w. Depending
on the whether the Universe is spatially open or closed the negative character of w will be
accentuated or softened. A detailed analysis of the impact of the curvature term on this and
related issues as the transition from deceleration to acceleration can be found in [12].

4. Transition to a new decelerated era?

It has been speculated that the present phase of accelerated expansion is just transitory and
that the Universe will eventually revert to a fresh decelerated era. This can be achieved
by taking as dark energy a scalar field whose energy density obeys a suitable ansatz. As
a result the equation of state parameter w evolves from values above but close to −1 to
much less negative values thereby the deceleration parameter increases to positive values [19].
Thus, the troublesome event horizon that afflicts superstring theories disappears altogether.
Here we shall argue that our holographic interacting model—which was devised to provide
a transition from deceleration to acceleration and alleviate the coincidence problem—is in
principle compatible with such a transition.

For the sake of simplicity we set k = 0. Inspection of equation (5) reveals that w can
become larger than −1/3 (which by equation (6) means deceleration) either by allowing any
of the two terms in the square parenthesis, or both, to reach sufficiently small values or just
keeping the first term nearly constant and allowing the second one to become negative enough.
Clearly, all these possibilities look a bit contrived, especially, the latter one as—contrary to
intuition—in such a case, the saturation parameter does not increase but decreases. However,
we should no wonder at this as the proposal of coming back to a decelerated phase for the
sole purpose of getting rid of the event horizon appears rather artificial, especially because
nothing in the observational data hints at that. Nonetheless, we should keep an open mind
since this possibility cannot be dismissed offhand. At any rate, we wish to emphasize that
those holographic dark energy models that identify the infrared cutoff L with the event horizon
are unable to account for such a transition.

In all, the holographic dark energy provides a simple and elegant thermodynamic-based
explanation, within Einstein relativity, for the present era of cosmic accelerated expansion.
Moreover, it substantially alleviates the coincidence problem provided that matter and dark
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energy do not conserve separately. Finally, the model can, in principle, accommodate a later
transition to a new decelerated phase. Present and coming observational data should constrain
the basic parameters of the model, i.e., � and c2.

Acknowledgments

Thanks are due to the organizers of the second edition of the IRGAC series of Conferences. I
am greatly indebted to Winfried Zimdahl for conversations and advice and to the anonymous
referee for suggestions. This research was partially supported by the Spanish ‘Ministerio de
Educación y Ciencia’ under grant FIS2006-12296-C02-01.

References

[1] Padmanabhan T 2003 Phys. Rep. 380 235–320
Sahni V 2004 Preprint astro-ph/0403324
Lima J A S 2004 Braz. J. Phys. 34 194–200
Riess A G et al 2004 Astrophys. J. 607 665–87
Perivolaropoulos L 2006 Preprint astro-ph/0601014
Astier P et al 2006 Astron. Astrophys. 447 31–48
Riess A G et al 2006 Preprint astro-ph/0611572

[2] Spergel D N et al 2006 Preprint astro-ph/0603449
[3] Copeland E, Sami M and Tsujikawa S 2006 Preprint hep-th/0603057
[4] ’t Hooft G 1993 Preprint gr-qc/9311026
[5] Susskind L 1995 J. Math. Phys., NY 36 6377–96
[6] Bekenstein J D 1994 Phys. Rev. D 49 1912–21
[7] Cohen A G, Kaplan D B and Nelson A E 1999 Phys. Rev. Lett. 82 4971–4
[8] Li M 2004 Phys. Lett. B 603 1–5
[9] Fischler W and Susskind L 1998 Preprint hep-th/9806039

Cataldo M, Cruz N, del Campo S and Lepe S 2001 Phys. Lett. B 509 138–42
[10] Guberina B, Horvat R and Nikolic H 2005 Phys. Rev. D 72 125011(6)

Wang B, Gong Y and Abdalla E 2005 Phys. Lett. B 624 141–6
Huang Q-G and Li M 2004 J. Cosmol. Astropart. Phys. JCAP08(2004)013
Gong Y, Wang B and Zhang Y-Z 2005 Phys. Rev. D 72 043510(6)
Nojiri S and Odintsov S D 2006 Gen. Rel. Grav. 38 1285–304
Wang B, Lin C-Y and Abdalla E 2006 Phys. Lett. B 637 357–61

[11] Pavón D and Zimdahl W 2005 Phys. Lett. B 628 206–10
[12] Zimdahl W and Pavón D 2006 Preprint astro-ph/0606555
[13] Wetterich C 1988 Nucl. Phys. B 302 668–96
[14] Horvat R 2004 Phys. Rev. D 70 087301(3)
[15] Amendola L 2000 Phys. Rev. D 62 043511(10)

Chimento L P, Jakubi A S, Pavón D and Zimdahl W 2003 Phys. Rev. D 67 083513(11)
del Campo S, Herrera R, Olivares G and Pavón D 2006 Phys. Rev. D 74 023501(9)

[16] Olivares G, Atrio-Barandela F and Pavón D 2005 Phys. Rev. D 71 063523(7)
Olivares G, Atrio-Barandela F and Pavón D 2006 74 023501(9)

[17] Bak D and Rey S-J 2000 Class. Quantum Grav. 17 L83–L89
[18] Seljak U, Slosar A and McDonald D 2006 J. Cosmol. Astropart. Phys. JCAP10(2006)014
[19] Carvalho F C, Alcaniz J S, Lima J A S and Silva R 2006 Phys. Rev. Lett. 97 081301(4)

Alcaniz J S 2006 Preprint astro-ph/0608631

http://dx.doi.org/10.1016/S0370-1573(03)00120-0
http://www.arxiv.org/abs/astro-ph/0403324
http://dx.doi.org/10.1086/383612
http://www.arxiv.org/abs/astro-ph/0601014
http://dx.doi.org/10.1051/0004-6361:20054185
http://www.arxiv.org/abs/astro-ph/0611572
http://www.arxiv.org/abs/astro-ph/0603449
http://www.arxiv.org/abs/hep-th/0603057
http://www.arxiv.org/abs/gr-qc/9311026
http://dx.doi.org/10.1063/1.531249
http://dx.doi.org/10.1103/PhysRevD.49.1912
http://dx.doi.org/10.1103/PhysRevLett.82.4971
http://dx.doi.org/10.1016/j.physletb.2004.10.014
http://www.arxiv.org/abs/hep-th/9806039
http://dx.doi.org/10.1016/S0370-2693(01)00490-7
http://dx.doi.org/10.1103/PhysRevD.72.125011
http://dx.doi.org/10.1016/j.physletb.2005.08.008
http://dx.doi.org/10.1088/1475-7516/2004/08/013
http://dx.doi.org/10.1103/PhysRevD.72.043510
http://dx.doi.org/10.1007/s10714-006-0301-6
http://dx.doi.org/10.1016/j.physletb.2006.04.009
http://dx.doi.org/10.1016/j.physletb.2005.08.134
http://www.arxiv.org/abs/astro-ph/0606555
http://dx.doi.org/10.1016/0550-3213(88)90193-9
http://dx.doi.org/10.1103/PhysRevD.70.087301
http://dx.doi.org/10.1103/PhysRevD.62.043511
http://dx.doi.org/10.1103/PhysRevD.67.083513
http://dx.doi.org/10.1103/PhysRevD.74.023501
http://dx.doi.org/10.1103/PhysRevD.71.063523
http://dx.doi.org/10.1088/0264-9381/17/15/101
http://dx.doi.org/10.1088/1475-7516/2006/10/014
http://dx.doi.org/10.1103/PhysRevLett.97.081301
http://www.arxiv.org/abs/astro-ph/0608631

	1. Introduction
	2. Holographic dark energy
	3. Interacting dark energy
	3.1. FLRW universes with

	4. Transition to a new decelerated era?
	Acknowledgments
	References

